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1  | INTRODUC TION

A major property of life on Earth is its uneven distribution, both in 
space and among lineages. Geographically, species richness tends 
to be concentrated at lower latitudes (Hillebrand, 2004; Willig, 
Kaufmann, & Stevens, 2003), a trend that has been present during 
intervals of the Palaeozoic and over the past 30  million years 
(Mannion, Upchurch, Benson, & Goswami, 2014). Interestingly, sub-
stantial differences in species richness can occur in similar environ-
ments (also known as "diversity anomalies" sensu Ricklefs & Latham, 
1993), such as the difference in species richness between mangrove 
communities in the Indo-West Pacific and the Atlantic/Caribbean 
regions (Ricklefs & Latham, 1993) and the greater diversity within 
disjunct genera of angiosperms in eastern Asia compared to eastern 
North America (Qian & Ricklefs, 2000). Taxonomically, some clades 
often account for a disproportionately large share of the species 
richness in any given taxon, such as Phyllostomidae among bats 

(Jones, Bininda-Emonds, & Gittleman, 2005), beetles among insects 
(Farrell, 1998) and angiosperms among plants (Davies et al., 2004). 
On the other hand, some clades remain as ancient, species-poor rel-
icts, such Amborella trichopoda (Baill.), the sister group to all other 
flowering plants, and Mastotermes darwiniensis (Froggatt, 1897), the 
sister group to all other termites (Grandcolas, Nattier, & Trewick, 
2014; see also Pie & Feitosa, 2016). Although understanding these 
discrepancies is a major theme in evolutionary biology, only recently 
have studies focused on hypotheses that are explicitly based on the 
mechanisms that actually change species numbers, namely specia-
tion, extinction and dispersal (Ricklefs, 2006; Wiens, Graham, Moen, 
Smith, & Reeder, 2006).

A common approach to the study of lineage diversification is 
the use of equal rates Markov (ERM) models, under which instan-
taneous rates of diversification (speciation minus extinction) are 
equal for all lineages within an evolving clade (Heard & Mooers, 
2002). Due to stochastic variation in realized diversification rates, 
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ERM models can lead to trees of many shapes and sizes (Heard & 
Mooers, 2002), which emulate a variety of patterns found in real 
clades (Mooers & Heard, 1997). However, an important limitation of 
ERM models is that they show considerably less variation in richness 
among clades than what is found in real phylogenies (see Heard and 
Mooers (2002) and included references). Such discrepancy could 
be ameliorated by allowing for speciation rates to evolve over time 
and with the ensuing differences being inherited by the descending 
lineages (Heard, 1996), yet this mechanism has rarely been tested 
with real data sets. Harvey, Nee, Mooers, and Partridge (1991) 
first assessed this possibility by examining whether the shorter of 
two branches descended from a single common ancestor tends in 
turn to lead to shorter descendent branches ("branch-length her-
itability") and found significant evidence for this effect based on 
the avian phylogeny of Sibley and Ahlquist (1990). The only addi-
tional study to test for branch-length heritability was carried out by 
Savolainen, Heard, Powell, Davies, and Mooers (2002) and showed 
similar results for bacteria, fungi, orchids, monocots and angio-
sperms. Although these results are suggestive, they only take into 
account minimal information about the tree and ignore the species 
richness associated with each terminal in the studied phylogenies. 
In this study, the hypothesis of phylogenetic signal in diversifica-
tion rates is tested using a rigorous, model-based method. Strong 

evidence for phylogenetic signal was detected in all data sets, which 
could suggest that the inheritance of diversification rates might be 
a general phenomenon.

2  | MATERIAL S AND METHODS

Information on phylogenetic relationships and species richness 
was compiled for seed plants, mammals, squamates and amphib-
ians, with the combined analyses involving over 329,737 species. 
Relationships between plant families were obtained from Qian and 
Zhang (2014), which itself was based on previous efforts (Davies 
et al., 2004; Zanne et al., 2014), whereas species richness data 
were based on The Plant List (2013). There were slight inconsisten-
cies between their respective taxonomies, but sensitivity analyses 
indicate that these differences would not affect our conclusions. 
Mammal phylogenetic relationships and species richness data were 
obtained from Bininda-Emonds et al. (2007). Amphibian phyloge-
netic relationships and species richness data were based on Jetz 
and Pyron (2018). Finally, phylogenetic relationships and species 
richness of squamate families were obtained from Tonini, Beard, 
Ferreira, Jetz, and Pyron (2016). Species richness data are provided 
in Data S1.

F I G U R E  1   Phylogenetic distribution of 
diversification rates in plants, mammals, 
squamates and amphibians. Rates were 
rescaled to a maximum of 1 to facilitate 
visualization. Tree tips correspond to 
families, and bars to the right represent 
diversification rates
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In each data set, the tree was pruned so that only one repre-
sentative of each family was present. The corresponding diversifi-
cation rate was estimated by the natural logarithm of the current 
number of species in each taxon, divided by its respective stem 
age (Magallon & Sanderson, 2001; Raup, 1985). This procedure as-
sumes that the extinction rate is zero, which is definitely not true, 
yet it should provide a reasonable first approximation, particularly 
given the inherent difficulties in estimating extinction rates. The 
extent of phylogenetic signal in the data set was assessed using the 
λ parameter of Pagel (1999) and tested using likelihood ratio tests 
using the PHYTOOLS 0.6-60 package (Revell, 2012) in R 3.5.3 (R 
Core Team, 2019). In addition, we calculated how phylogenetic 
autocorrelation varied over evolutionary time in the studied taxa 
by computing correlograms based on Moran's I, as implemented 
in the phyloCorrelogram function in the PHYLOSIGNAL 1.3 pack-
age (Keck, Rimet, Bouchez & franc, 2016) in R 3.5.3 (R Core Team, 
2019). Given that a larger sample of possible topologies were avail-
able in the case of mammals, squamates and amphibians, the en-
tire process was repeated for each of 1,000 trees in each analysis. 
It is important to note that each estimate of net diversification rate 
is not instantaneous but rather an average across the whole termi-
nal branch. Although violation of this assumption might potentially 

lead loss of accuracy in our estimates, the resulting effects are 
unlikely to change our conclusions.

3  | RESULTS AND DISCUSSION

There was considerable variation in diversification rates among 
lineages (Figure 1), with statistically significant support for phy-
logenetic signal in diversification rates in all data sets, except 
for Squamata (Table 1). The highest value for λ was found in am-
phibians (λ  =  0.61), whereas the lowest was found in squamates 
(λ = 0.01; Table 1). Similar patterns were detected in the estimated 
correlograms, despite variation depending between topologies 
(Figure 2). These results are largely consistent with those by 
Harvey et al. (1991) for birds and Savolainen et al. (2002) for angio-
sperms, even though they used a completely different approach. 
Given that these results seem robust, one must wonder why 
should lineages show phylogenetically autocorrelated diversifica-
tion rates. Savolainen et al. (2002) provided two classes of possible 
explanation. The first involves biogeographical factors: if long-dis-
tance dispersal is rare, habitat is generally heritable and may in-
clude conditions that might differentially promote diversification. 

TA B L E  1   Estimates of phylogenetic signal of diversification rates based on Pagel's λ

Taxon
Total number of 
species λ logL0 logL

Amphibia 7,238 0.61 (0.53–0.70) 179.5505 (172.3845/187.4458) 186.197 (179.4412/193.1349)

Mammalia 5,832 0.52 (0.43–0.60) 191.6083 (136.1059/217.8352) 196.0943 (141.5353/221.7816)

Tracheophytes 305,394 0.47 (0.48–0.46) 646.8349 (633.0166/660.6532) 674.8261 (660.309/689.3432)

Squamata 9,755 0.01 (0.0001–0.20) 146.0269 (136.9104/155.6151) 146.024 (136.9094/155.6143)

Note: In the case of mammals, estimates were repeated for each of 1,000 post-burnin topologies and parameter estimates and likelihoods are 
provided as means, followed by 95% credibility intervals in parentheses).

F I G U R E  2   Correlograms indicating the 
level of phylogenetic autocorrelation of 
diversification rates in plants (a), mammals 
(b), squamates (c) and amphibians (d). 
Blue lines correspond to the estimated 
autocorrelation, whereas green lines 
indicate upper and lower confidence 
intervals. Different lines indicate 
estimates based on alternative underlying 
topologies. See text for details
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Alternatively, diversification rates might be influenced by traits in 
the species themselves, such as mutation rates (Lanfear, Ho, Love, 
& Bromham, 2010) and range sizes (Waldron, 2007). Discriminating 
the relative contributions of these two classes of mechanism is 
challenging, particularly given that the analytical tools to carry 
out this kind of task have only become available recently (e.g. 
Freckleton & Jetz, 2009). In addition, it is important to note that 
phylogenetically patterned extinction might also contribute to the 
observed patterns. For instance, current extinction risk has been 
recently demonstrated to be influenced by phylogenetic history in 
amphibians (Corey & Waite, 2008) and birds (Thomas, 2008, but 
see Jetz et al. 2014), but not in felids (Diniz-Filho, 2004). These 
alternative mechanisms are particularly relevant given the con-
siderable variation in phylogenetic signal between taxa (Figures 
1 and 2). Discriminating "intrinsic" and "extrinsic" explanations for 
phylogenetic autocorrelation in speciation and extinction rates is 
certainly a major challenge for future studies.

An important implication for the results of the present study 
is related to the possibility of species sorting or clade-level selec-
tion (Eldredge, 1989; Stanley, 1975; Vrba, 1984; See Rabosky and 
McCune (2010) for a review). In particular, differences among clades 
in their propensity to speciate or go extinct are a prerequisite for 
evolution above the species level (Williams, 1992). As new and more 
comprehensive phylogenies become increasingly available, it will 
be possible to investigate the temporal scale in which phylogenetic 
autocorrelation in diversification is detected, as well as to develop 
more mechanistic models of lineage diversification.
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